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As shown recently, if the distance between two heavy nuclei becomes less than its 
critical value, R,, , their electric potential is strong enough to create electron-positron 
pairs from the vacuum. This process may occur when the ground level of the quasi- 
molecule (2, 2, e) is lower than -m,c*. In order to find R, the Dirac equation with two 
Coulomb centers is considered. By means of a proper choice of coordinates and using 
the variational principle the problem is reduced to a set of ordinary linear differential 
equations with singular coefficients. To solve the boundary problem the Riccati equation 
for the logarithmic derivative matrix was considered. The computations are carried 
out and R,, is found as a function of the nuclear charges. By virtue of the variational 
principle the obtained quantity is a sure lower limit for R,, . 

I. INTRODUCTION 

Spontaneous creation of electron-positron pairs in superstrong electrostatic 
potentials is of considerable interest for the quantum electrodynamics as a test 
of the Dirac equation and of some fundamental properties of the physical vacuum. 
The potential wells, deep enough to produce such an effect, may be realized in 
collisions of heavy ions with a supercritical total charge 2, + Z, > Z,,. w 170. 
Such an experiment is reported to be in plans at some laboratories and, probably, 
will be set up in a not too remote future. The theory of this effect was substantially 
advanced in a number of recent works [l-8]. Of great importance is an accurate 
calculation of the quantity, the principal for the effect, of the critical internuclear 
distance R,, , i.e., the maximal distance necessary for the pair creation. In other 
words, R,, is the value of the internuclear distance R at which the ground term of 
the quasimolecule (Z, , Z, , e-) crosses the boundary of the lower continuum, the 
electron energy being E = -mc2. The spontaneous creation of positrons occurs 
while the vacant level with E -C -mc2 is occupied by an electron from the vacuum. 
To know the accurate value of R,, is very important because (as shown in 
Refs. [4, 51) the total cross section depends sharply on R,, , u N Rz12; besides, the 
threshold energy of the heavy ion beam is determined by R,, . 
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In order to calculate Rci. , one needs to solve the eigenvalue problem for the 
Dirac equation with the potential of two Coulomb centers. Contrary to the non- 
relativistic case, the variables cannot be separated and the problem is essentially 
two-dimensional. The subject of the present work is a variational approach 
reducing the problem to a set of ordinary differential equations that may easily be 
solved by a computer. The idea of solving the boundary problem for partial 
differential equations by reducing it to ordinary equations is well known as the 
Kantorovich method (see its description in [9]). Its application to the Dirac 
equation is presented in Section II. The resulting linear differential equations are 
considered in Section III. They were solved using the method elaborated by 
Abramov et al. [lo]. The results on R,, are presented and discussed in Section IV. 
Results concerning the model problem of the scalar particle in the two-center 
potential are also presented there. Explicit formulas for the coefficient functions 
are presented in the Appendix. 

The R dependence of electron energy levels in a molecule consisting of two heavy 
atoms may also be of interest (cf. Ref. [II]). We did not extend our calculations 
to this case; however, the method is applicable and some necessary formulas are 
given in Section II. 

As a rule, we use the natural units: +‘i = c = m, = I; CL = I? = l/137, 5 = 2Zo1. 

II. THE VARIATIONAL APPROACH 

2.1. Primary Equations 

The bound state problem for the relativistic electron in a potential V(r) is 
equivalent to searching for the extremum of the functional 

J=jY*(---iaV+@z+ V---)yd3r (2.1) 

in the space of the four-component bispinor functions Y(r) with the norm 

N = 
s 

?PY d3r. (2.2) 

To reduce the number of unknown functions, exclude two lower components of 
Y using the Dirac equation explicitly. Note that no approximate reduction of the 
Dirac bispinors was used to obtain Eqs. (2.3 j(2.6). Then for the spinor e formed 
by the upper components of Y we get 

J = s [(m + E - V)-’ ](aV)[ I2 + (m - E + V) I f I”] d3r, 

N = j [(m + E - V)-2 ](uV).$ j2 + / 5 I”] d3r. 

(2.3) 

(2.4) 
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The functional J may be represented in a form specific for the non- 
relativistic quantum mechanics [12, 131 introducing another spinor field 
$ = (m + E - V)-lj2 f, 

J = 1 [I Vt,h I2 + i(V#*)(F x +,b - ia,b*(F x u)V# + 2(U- E)[ 9 12]d3r, (2.5) 

where 

F = -$(m + E - V)-l VV, U = EV - gV2 + +(F* -VF), E = ~(~2 -m2); 

E is the effective energy, U is the effective scalar potential (depending on the 
energy), the spin-orbit coupling with field F is also present. Note that the norm 
in space of the # functions is somewhat unconventional. 

N = j [I VlF, I2 + i(Vy%*)(F x a)# - i#*(F x a)V# + W] r-1d3r, (2.6) 

where 

B=m+e--V; W = r2 - (F2 + VF). 

This norm does not affect the equation obtainable from (2.5); however, it is 
important for boundary conditions. 

The matter of interest for us now is to find a potential Vfor which the energy level 
crosses the boundary of the lower continuum. So, put E = -m (the functional is 
then much simplified); the resulting equation for I,!J is the Schriidinger equation 
with an effective potential and zero energy. This approach was very useful in 
finding the critical charge (assuming for V the Coulomb form with a cutoff at 
r < r, ; the discussion is given in Ref. [2]), as well as in a qualitative analysis of 
the problem in view [12, 141. 

Consider the potential of two identical pointlike charges Ze, 

V = -$S(r,-’ + r,‘), 5 = 2zor, (2.7) 

where rI and rz are distances to the centers. It may be shown that in the relativistic 
case the variables cannot be separated and with account of the axial symmetry the 
problem is essentially two-dimensional. Introduce the cylindrical coordinates 
(p, z, v) with the origin halfway between the centers; r1,2 = [p2 + (z F R/2)2]1/2. 
The ground state has the total angular momentum projection Mz = 4; the 
projection of the orbital momentum A is 0 for the upper component (fit) and 1 for 
the lower component ($3. The ground state has the positive parity with respect 
to reflection in the plane z = 0. This implies that & is an even function of z 
while $A is odd. Resides, due to the centrifugal barrier, $I must have a simple zero 



244 MARINOV, POPOV, AND STOLIN 

at p = 0. With all this in view one may write 

Ywr) = XdP, z>, #Jr> = 4R-‘pz exp(iy) xz(p, z), (2.8) 

where x1.2 are real functions of two variables, even in z and with no kinematical 
zeros. Substituting (2.8) into Eq. (2.5) and integrating over F one gets 

where 

J = j-m PIP j-= W@x3" + W/3~2)~ + unx12 
0 0 

+ Wl2XlX2 + P2U22x22 -+ x143x2 - &*Rxl}, (2.9) 

(ax)" = (waP)2 + (ax/w2, fi = 4R-2pz, 

U,, = --Y-+V2+$F2, Ul2 = p-X, 

U,, = U,, + p-If.0 + +P-~, A = F~ alap - F, alaz, 

F, = *V-l avlap, F, = iv-1 avlaz. 

2.2. Test Functions 

The idea of the present approach is as follows. Introduce new variables 

x = ap, 4, Y = UP, 4. (2.10) 

In the separable case the choice of (x, y) is evident; there is a solution independent 
on y; e.g., for a potential with spherical symmetry we would like x = (p2 + z2)li2, 
y = p/z. There is no separable system in our case, so we prefer such coordinates 
that the solution has singularities in x, while there is no singularity in y. Such a 
system may be called asymptotically separable. The singularities of our problem 
locate at rl + 0, r, + 0, and at infinity. So the function X in (2.10) is to be chosen 
in such a way that x ---f 0 at rl + 0 or r2 -+ 0, and x > 1 at rl , r2 > R. Besides, 
it is appropriate to use functions even in z (i.e., pertaining to the symmetry 
rl ++ r2). 

With such new variables substitute the unknown functions in the functional J 
by finite sums: 

Xl = f %(x)Yk-l, x2 = i P)m+kWYk--l, 
k=l B=l 

(2.11) 

where pfi (k = I,..., iV = m + n) are arbitrary functions of x. Minimization of 
the functional on this class of test functions is called the (m, n&approximation. 
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Integrating over y we get the functional in the form 

(2.12) 

where P, Q, R are matrices depending on X. An analogous formula may be 
obtained for the norm. Minimization of (2.12) leads to a set of linear second-order 
differential equations for functions vie with boundary conditions resulting from 
integrability of the norm. This problem is much simpler than the primary pair of 
partial differential equations and is discussed in the next section. If asymptotically 
separable coordinates are chosen the correct singularities occur in the test functions 
enabling one to obtain good accuracy. Note, for instance, that in elliptic coordi- 
nates, x = (rl + r,)/R, y = (rl - r,)/R, the singularity at rl,* + 0 is not separable 
(X -+ 1, y2 + 1). The resulting values of R,, were far from accurate (calculations 
in [15]). 

Two asymptotically separable coordinate systems were tried. In one of them the 
curves x = const are the equipotentials 

x = 2R+,r,/(r, + r2), Y = (rl - r2j2/(rl + r2j2. (2.13) 

In the other the curves x = const are the Cassinian ovals 

x = 4R-2r,r, , y = (rl - r2)2/4r,r2 . (2.14) 

Both the variants have some similar properties: (i) the region of x is (0, co) with 
singularities at boundaries, (ii) the region of y at fixed x is ( ul(x), y2(x)) where the 
derivative of y1 is discontinuous at x = 1 due to a change of topology of the surface 
X(p, z) = x. The calculation shows that both the systems result in very close 
values of R,, , while the latter is better (the curve R,, (Z) is somewhat higher). So 
the subject of the subsequent discussion will be the Cassinian choice (2.14). 

In our approach the leading singularities in the test functions are those of the 
exact solution, analyzed in detail previously [14]. At small x (near a nucleus) the 
power singularity arises from the term Nr2 in the effective potential (V2 in 
Eq. (2.9)): 

x(x, u) - x-3 (T = 1 - (1 - 52/4)l/2. (2.15) 

Note that for Z < 137 (5 < 2) there is no “collapse” in the nuclear field, so it is 
not necessary to cut off the potential at small r and the nuclei may be considered 
as pointlike. At large x the singularity is determined by the repulsive Coulomb tail 
(-V in Eq. (2.9)): 

x(x, y) - exp[ -2([R)‘j2 x114]. (2.16) 

Consider now the integration over the inessential variable y. 
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2.3. Reduction to One-Dimensional Problem 

Substituting the test functions (2.11) into Eq. (2.9) with variables (2.14), one gets 

J = jm dX- I” dl’ D(x, Y> C (Pijyi’y; + qijyivj + 2rijv,i’Fj), (2.17) 
0 II1 f.j 

where 

Yew = x-l, y&r) = x-1 - 1 at x < 1, ul(x) = 0 at x > 1; (2.18) 

D(x, v) is the Jacobian 

a@, 4 D(x, u) = P (x = , k R3x[y(y + W’“, (2.19) 

and pf3, qij , rf3 are some functions of x and y (see the Appendix). Integration 
over y results in the functional (2.12) with the x-dependent matrices: 

Pfj(X) = J” PJX, Y) D(x, Y) dY, (2.20) 
Yl 

etc., given explicitly in the Appendix. 
In general, the coefficient matrices P, Q, R depend on the choice of the second 

variable y. With our choice we succeeded in expressing all the matrix elements in 
terms of elementary functions. However, the matrices P, Q, R are simultaneously 
degenerating near singularities. For instance, at x + 0 and m = 2, IZ = 1, 

Pll = 8x” + 0(x4), PI2 = P,, = $x(1 - 4x) + O(xs), 

Pzz = i&(1 - x) + 0(x2), PB = (l/12) x’ + 0(x5), (2.21) 

PI, = Pz3 = P31 = P32 = 0, 

while det P = 0(x8). Dealing with the resulting set of ordinary differential 
equations one has to analyze the asymptotics of the matrices and to exclude some 
inessential singularities. 

III. BOUNDARY PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS 

3.1. Riccati Matrix Equation 

Minimization of the functional (2.12) leads to the set of linear differential 
equations (in this section we use the matrix notations): 

(3.1) 



CRITICAL INTERNUCLEAR DISTANCE 247 

0 < x < co, with the boundary condition resulting from convergence of the 
normalization integral. 

In order to find the eigenvalues the absolute normalization of v is of no 
importance. Consider a matrix Y, 

fp’ = Ycp. (3.2) 

The system (3.1) is satisfied if Y is a solution of the Riccati matrix equation 

Y’ = A + BY - Y2, (3.3) 

A = P-l(Q - R’), B = -P-l(R - R* + P’). (3.4) 

As for the boundary conditions, the situation is somewhat less trivial. In our 
case the matrices A and B are singular at the boundaries. To obtain a reasonable 
boundary condition to supplement Eq. (3.3), assume that near a singular point 
(x = 0) Y has the form 

Y = x-y(Y, + XY, + -.). (3.5) 

The exponent u, as well as the constant matrices YI, , is to be found from Eq. (3.3). 
In case of the regular singularity in the system (3.1), v = 1. Expanding A and B 
near the singular point one gets a sequence of linear recursive equations for 
y, 3 y2 ,...; the first equation for Y, is, however, quadratic, 

Y12 - B,Y, - A, = 0, (3.6) 

with some matrix coefficients A, and B, . To select the necessary solution of this 
equation among the infinite set of matrices satisfying it, one must look at v near the 
singularity, finding it from Eq. (3.3) and the initial boundary condition for y. 
Fortunately, in our case the selection is straightforward and corresponds to the 
choice of the less singular test functions (details in Section 3.2). 

The proposed procedure is as follows. Take a small x0 and a large xm . Find the 
expansion (3.5) and its analog at x > 1, the number of terms being determined 
by the necessary accuracy. Starting from these points with the initial values given 
by the expansions and solving the differential equation (3.3), obtain the left and 
right limits of Y at an intermediate point x1 (we use xl = l), Y(0)(xl) and Y(“)(xl). 
The problem is solved if ‘p and v’ are continuous at x1 . Thus, it is necessary that 

A((, R,,) = detlJ?O’(x,) - Y’“‘(xl)l = 0. (3.7) 
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In general, to find the eigenvalue (in our case to find R = R,, at fixed i) one has 
to solve the algebraic equation (3.7). If one considers the extremal eigenvalue 
(the maximal R,,) the eigenfunctions are nonzero and Y is nonsingular inside the 
interval. Taking the correct branches near the singular points from the very 
beginning, it is possible to get rid of unpleasant oscillations of Y, inevitable in 
another approach. 

After the eigenvalue is found one may wish to obtain the variational 
test functions. Then one may proceed as follows. The degenerate matrix 
D = Y(O)(x,) - Y(“)(x,) is known. Diagonalize it, D = C-l&, D = diag(O, d, ,...) 
(one of the eigenvalues of D is zero!). Now solve the combination of the equations 
(3.2) and (3.3) in the inverse direction (i.e., from x1 to x0 and to x,), while the 
initial value of y may be taken in form v(xl) = C+ where & = 1, & = 0 for 
k f 1. The resultant y(xo) provides one with the initial value for an analytical 
solution of Eq. (3.2) with Y in the form of Eq. (3.5). The asymptotics of v(x) near 
x = cc is obtained in the same way starting from g)(x,). The normalization 
integral is easily calculated in parallel with v(x) and Y(x). 

The formal reason for singularity in Eq. (3.3) at x = 0 is that det P vanishes 
(see Eq. (2.22)). However, some matrix elements of Q and R also vanish at x -+ 0. 
In order to evaluate the indeterminate form and to deal with moderate numbers 
we transform the coefficients (3.4). The region of large x is in the same situation. 
Besides, it is useful to map the interval (1, co) on the interval (0, I), so that both 
parts of our process are as similar as possible. This is the subject of the next 
section. 

3.2. Transformation of the Riccati Equation 

(a) General formulas. Because the matrices P, Q, R become degenerate at the 
singularities, as was noted in Section 2.3, various am, as well as elements of the 
matrix Y(x), have quite different orders of magnitude near the singularities. This is 
rather inconvenient for computations. To cure this difficulty, consider a linear 
transformation of the test functions 

T = SW v’s 9 det S(x) f 0. (3.8) 

For the transformed matrix Y,(x), vs’ = Y,vs, we get the same Riccati 
equation (3.3) with new coefficients As and Bs : 

Ys = s-1YS - S-S’, P, = STPS, 

A, = S-lAS + (S-SS)(S-lS’) - S-W’, (3-9) 
B, = S-IBS - 2S-‘S’. 

The matrix S is to be chosen in such a way as to make P, nondegenerate near the 
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singularities. (One may even take S = P-lj2 and Ps = 1; however, this is not 
convenient.) 

The Riccati equation may be further transformed to make the problem more 
suitable for computations by renormalizing Ys and introducing a new independent 
variable t: 

z =f(x>Y,, x = f(t). (3.10) 

The resulting equation is 

dZ/dt = &)[A= + BzZ - Z2], (3.11) 

where 

g(t) = f-’ d5/& AZ = f 2As > Bz =fB, +f’. (3.12) 

(b) IntervaZ 0 < x < 1. In view of Eq. (2.21) the simplest choice of S is 

s= E -:j 4). (3.13) 

Now det Ps is finite at x -+ 0, As N x-~, Bs - x-l. Evidently, Ys - x-l corre- 
sponding to a power behavior of the test functions near zero. So, in Eqs. (3.10)- 
(3.12) we used 

f(x) = x, x = t, g(t) = t-l, (3.14) 

and AZ and Bz are finite. 

(c) Interval 1 < x < 03. At x + co, 

Pll > N x3/2 PI2 = P,, N )x1/2, Pz2 -%x-1/2, Pz3 - (2/H) x7/2. (3.15) 

Matrices A and B in Eq. (3.4) are of the indeterminate form co/ co. To evaluate it, 
take the diagonal S with elements 

s,, = x-314 2 s,, = x114 7 s,, = x-714. (3.16) 

Then det P is finite at large x, As - x-312, B, - x-l, Ys - x-314, corresponding 
to the essential singularity in the test functions, Eq. (2.16). It is natural now to use 

f(x) = x3/6, ((t) = t-4, g(r) = -4t-2, o<tg1. (3.17) 

AZ is finite B, N t, Z is analytical and may be expanded in powers of t near zero. 
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3.3. The Calculatiorl 

The process of calculation was as follows. The parameters 5 and R are present 
in the matrix Q only, 

Q(x) = c’Q”‘(x) + <RQ’“‘(x) + Q’“‘(x). (3.18) 

First of all, the matrices P, Q(l), Q@), Qc3), and R were expanded in x near zero and 
in x-l at infinity. This is a simple task as they are determined by elementary 
functions (see Appendix). Then, using Eq. (3.1 I), expansions of Z were obtained 
in powers of x near zero and in powers of t = x-lJ4 at infinity. The first step in 
doing this was to solve the equation of the form (3.6). Fortunately, in both the 
cases it may be reduced to the form with B, = 0. Besides, at x -+ co, AI is the 
identity multiplied by {R/4. The necessary solutions are 

Z, = G-WG at x---f 0, (3.19) 

Z, = -$(cR)‘/” 1 at .x--t co, (3.20) 

where U is a diagonal matrix with elements 

u,, = 4[1 + (4 - <2)1/“], u,,.,, = &[l + (10 ‘f 12112 - 52)‘/2], (3.21) 

and G is a matrix diagonalyzing A, and independent on 5 and R. The eigenvalues 
(3.21) are related to the leading powers in expansion of functions v’r, ; the first of 
them is the least and is physically meaningful (cf. Eq. (2.15)), others are specific 
for the (2, 1) approximation. Note that a positive value was taken for every square 
root in (3.21) while the minus in Eq. (3.20) guarantees the decreasing at infinity 
(cf. Eq. (2.16)). Higher coefficients in expansion of Z (matrices Z, , Z, ,...) were 
found with no trouble by solving a chain of linear matrix equations of the general 
form CZ + ZD = F. The necessary number of terms in the expansions is deter- 
mined by the choice of the starting points x0 and x, = to4. The minimal numbers 
are 2 at x + 0 and 3 at t + 0 due to the factors of x-l and tf2 in Eq. (3.11). 

Starting from x0 = 0.1 and t, = 0.1 with the initial values of Z given by the 
expansions (six terms were used) the Riccati equation (3.11) was solved by means 
of the Runge-Kutta method and the matrices Z(O)(l) and Z@‘)(l) were obtained. 
Reversing the S transformation of Section 3.2, one is able to calculate the function 
A({, R) in Eq. (3.7). The function A([, R) is rather sensitive to R near its zero 
(the derivative ~10-20) providing with a good accuracy in finding R,, . As there 
is no sharp behavior in the coefficient functions the step in the Runge-Kutta 
procedure may be as much as 0.01 while the accuracy in A([, R) is --O.OOOl. So, 
the program does not take more than a few minutes to calculate R,, for a fixed 5 
with accuracy 10-4. 
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IV. RESULTS 

The calculations were fulfilled for nuclei with 2 = 90-100 for (m, n) = (1, 0), 
(2,0), (1, l), (2, 1) as defined in Eq. (2.11). The results are presented in Fig. 1. 
Evidently, the account for both components of the spinor wavefunction is essential 
while addition of extra powers of y increases R,, by small corrections. In principle, 
it is not difficult to calculate a next approximation, e.g., (2, 2); however, it would 

: . : . : . 
90 95 100 

2: 

FIG. 1. Various (m, n) approximations for R,, as functions of the nuclear charge. Curve A 
is calculated by means of Eq. (4.1) based on the asymptotical approach [14]. 

TABLE I 

Various Approximations for R,, (fermi) in case of two Uranium nuclei 

(1, 0) 
Mijller 

Sphere et al. [ll] Asympt. a b (2.0) (1, 1) c&l) 

34.3 36 42.8 34.0 34.1 31.4 50.2 51.3 
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scarcely change R,, by more than 1 %-2Tb. Note that due to the variational 
principle the calculated values of R,, are the lower limit for the critical internuclear 
distance. 

To illustrate the situation various approaches to calculation of R,, in case of 
uranium nuclei (Z = 92) are presented in Table I. Besides our (m, n) approxi- 
mations, the following numbers are given: critical diameter of a spherical shell 
with total charge 22, results of the calculation [ll] fulfilled by means of the Ritz 
method, R,, calculated using the asymptotic formula (4.1) derived in Ref. [14]. 
The approach with one test function (1,0) is given for two choices of the variables: 
(a) Eq. (2.13), (b) Eq. (2.14). This case is considered in some detail in a previous 
work [16]. Note that the result of the work by Muller, Rafelski, and Greiner [ll] 
is essentially lower than our (2, 1) approximation. The authors considered an 
expansion of the Y function over some set of basis functions used in the non- 
relativistic two-center problem (100 basis functions were retained). However, the 
basis functions have no correct singularity (2.15) near the nuclei and this is an 
evident reason for a slow convergence of such an approach. By virtue of the 
variational principle the exact values of R,, are higher than the curve (2, 1) in 
Fig. 1. 

0.5 

FIG. 2. Critical distance in the two-center problem for pointlike nuclei; R,, in unih h/me, 
5 = 2.53. The dashed curves are calculated by means of Eq. (4.1). The results for a spinless 
particle are also shown. In this case the abscissa is ZCY. 

The general character of dependence of R,, on 5 is presented in Fig. 2 on the basis 
of the (2, 1) approximation. We have also shown the curve for the model problem 
of a scalar particle, This problem, formulated in terms of the Klein-Gordon 
equation, is quite like the electron problem from the mathematical point of view. 
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The functional to be variated may be obtained from Eq. (2.9) by putting xz = 0 
and omitting the term +F2 in U,, . The approximation with one test function is 
considered in Ref. [16]. Now we have calculated the (2,O) approximation. The 
results for R,, differ by no more than 10-3. The dashed curves are calculated using 
the formulas deduced from analysis of asymptotics [12, 141 at R,, < 1, 

where 

R,, = 5-l exp(-g-l[arc ctg(h/g) - arg Ql + 2ig)]}, (4.1) 

g = (5” - 1)1/2, 

for s = Q (electron), 

g, = (4 - py, h = (5 + 1x - g1>/(5 + 81) 

g = (5’ - w2, 12 = * - (1 - p)lP 

for s = 0. This formula was derived at g < 1; however, its deviation from the 
exact value is no more than IO%-20% up to 5 = 1.8. 

In the calculations we assumed that the nuclei are pointlike. This is correct in 
case 2 < 137 and there is no “collapse” in the Coulomb field of one nucleus. The 
account of the finite nuclear radius rN diminishes R,, by a correction NrN21Rc7 
(detailed consideration is given elsewhere). For the nuclei with Z = 90-100 this 
correction is 4.5 fm. 

The obtained values of R,, are rather large; for uranium R,, is more than 7r, . 
The cross sections are several dozens of millibarns, while no background is highly 
dangerous (discussion in [4]). Note that, as shown in [3], it is not necessary to 
collide fully ionized beams; it is possible to use a heavy ion beam and a conventional 
heavy target. With all this in view one may hope that the experiment will soon be 
set up. 

APPENDIX: COEFFICIENT MATRICES 

Every matrix element in Eq. (2.17) may be expressed via the basic functions of 
x and y: 

p(x, y) = 4R-2(p2 + z”) = x(2y + 1) - 1, 

r(x, y) = 4R-5~~ = -x”y(y + 1) + x(2y + 1) - 1, 

4x, Y) = (4p~lR~)~ = X*Y(Y + 1) 4x, Y), 

q(x, y) = QR”[- Y - &V2 + g(VV/ I’)2] 
= t{CR[(l + v)/xl”” - <“(I + Y)/X 

+ $x-2[x(1 + Y)(4Y + 1) - 11/u + Y)). 
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Omitting the irrelevant constant factor one may write 

t 

p(x, y) yi+- at i,j <m, 
Pii(X, Y) = 0”‘“’ Y) 6, Y) Yi+i-2m-2 at i,j>m, 

at i<m,j>mori>m,j<m. 

This is the contribution from the gradient terms. Other elements are presented for 
m =2,n = 1: 

411 = 4kYh q12 = q21 = Y4k v); 

922 = Y2dX> Y) + x-2Y(l + v>; 

ql3 = q31 = -@W(~Y + 1) 0, Y); 

q23 = 432 = -3@W ~(1 + 2~1 r(x, Y); 

q33 = 4x9 YMX, Y) - (4d-v + 4Y)l + BW, VI + 2X2YU + r>l; 
r - 0; 11 - r21 = 0; r12 = -YU + v); f-22 = yr12 ; 

r,, = -r,, = -t&, Y) ; 

r23 = --r3?. = Yr13 ; 

r33 = +4x, Y) p(x, Y). 

Integration over y is fulfilled in terms of elementary functions presented in Table II 
along with the asymptotics. They arise from the pattern integrals 

fn , g, = $ CI’ yn-(1’2)(l + y-” dy, 

where k = + and 8 for fn and g, . For any (m, n) approximation the matrix 
elements of p, q, r are polynomials in y (except the potential terms ~(1 + y)l12 
and (1 + y)-l in function q(x, y)) and nothing new occurs. 

The result for the matrix elements in Eqs. (2.12) and (3.1) is as follows. 

Pll = PO ; PI2 = p2, =p1; 

p22 =p2; PI3 = P31 = P,, = P32 = 0; 

P33 = -x2[2xr3 + (3x - 1) r2 + (X - 1) rl]; 

Q,, = qo ; Ql2 = Q21 = 41; Q22 = q2 + X-U + fi); 

Q13 = Q31 = (W-Y4rl + ro); Q23 = Q32 = @WW2 f rl); 

Q33 = -x2b2qd + 2x(x - 1) q3 + (x2 - 3x + 1) q2 - (x - 1) qJ 

+ iHxW3 + 5r2 + 5) + r. + 2~~1; 
R,, = R,, = 0; Rl2 = -4.h +f,); R22 = ---Vi +$A); 

R,, = -R,, = $r, ; R,, = -R,, = &r, ; R,, = x-lPs3 . 

s81/19/3-2 
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